blob: 27629d40a363127fd1d3f37917e2ad74952dffca (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
---
title: "Convolution of irreducible characters"
date: 2014-11-19T20:40:37-0800
date_display: November 19, 2014
...
__*TL; DR:* The actual PDF write-up is [here](https://dl.bintray.com/zmwangx/generic/20141119-convolution-of-irreducible-characters.pdf).__
---
Yesterday I was trying to establish the formula for orthogonal primitive central idempotents of a group ring. It is possible to establish the result through the convolution of irreducible characters. However, I stuck quite a while on trying to work out the convolutions themselves. For a formidable and unenlightening proof using "matrix entry functions" (i.e., fix a basis, induce a matrix representation, and explicitly expand everything in matrix elements), see [this post](http://drexel28.wordpress.com/2011/03/02/representation-theory-using-orthogonality-relations-to-compute-convolutions-of-characters-and-matrix-entry-functions/) (in fact, this is just one in a series of posts that lead up to the result). That's a really sad proof.
It turns out that I really should have been working the other way round — first establish the orthogonal idempotents (the proof of which is really simple and elegant, I was just trapped in a single thread of thought), then use that to compute the convolution of irreducible characters.
I feel like this is worth presenting (as the only proof I saw online is the really sad one above), so I TeX'ed it up. I tried to convert to MathJax HTML but eventually gave up (that's the story for another post). So, the write-up is in good ol' PDF, available [here](https://dl.bintray.com/zmwangx/generic/20141119-convolution-of-irreducible-characters.pdf).
|