blob: 5b1a90f3bf04fecfe0bbc67c2c61416620a9de28 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<meta content="pandoc" name="generator"/>
<meta content="Zhiming Wang" name="author"/>
<meta content="2014-11-19T20:40:37-0800" name="date"/>
<title>Convolution of irreducible characters</title>
<link href="/img/apple-touch-icon-152.png" rel="apple-touch-icon-precomposed"/>
<meta content="#FFFFFF" name="msapplication-TileColor"/>
<meta content="/img/favicon-144.png" name="msapplication-TileImage"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<link href="/css/normalize.min.css" media="all" rel="stylesheet" type="text/css"/>
<link href="/css/theme.css" media="all" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="archival-notice">This blog has been archived.<br/>Visit my home page at <a href="https://zhimingwang.org">zhimingwang.org</a>.</div>
<nav class="nav">
<a class="nav-icon" href="/" title="Home"><!--blog icon--></a>
<a class="nav-title" href="/"><!--blog title--></a>
<a class="nav-author" href="https://github.com/zmwangx" target="_blank"><!--blog author--></a>
</nav>
<article class="content">
<header class="article-header">
<h1 class="article-title">Convolution of irreducible characters</h1>
<div class="article-metadata">
<time class="article-timestamp" datetime="2014-11-19T20:40:37-0800">November 19, 2014</time>
</div>
</header>
<p><strong><em>TL; DR:</em> The actual PDF write-up is <a href="https://dl.bintray.com/zmwangx/generic/20141119-convolution-of-irreducible-characters.pdf">here</a>.</strong></p>
<hr/>
<p>Yesterday I was trying to establish the formula for orthogonal primitive central idempotents of a group ring. It is possible to establish the result through the convolution of irreducible characters. However, I stuck quite a while on trying to work out the convolutions themselves. For a formidable and unenlightening proof using "matrix entry functions" (i.e., fix a basis, induce a matrix representation, and explicitly expand everything in matrix elements), see <a href="http://drexel28.wordpress.com/2011/03/02/representation-theory-using-orthogonality-relations-to-compute-convolutions-of-characters-and-matrix-entry-functions/">this post</a> (in fact, this is just one in a series of posts that lead up to the result). That's a really sad proof.</p>
<p>It turns out that I really should have been working the other way round — first establish the orthogonal idempotents (the proof of which is really simple and elegant, I was just trapped in a single thread of thought), then use that to compute the convolution of irreducible characters.</p>
<p>I feel like this is worth presenting (as the only proof I saw online is the really sad one above), so I TeX'ed it up. I tried to convert to MathJax HTML but eventually gave up (that's the story for another post). So, the write-up is in good ol' PDF, available <a href="https://dl.bintray.com/zmwangx/generic/20141119-convolution-of-irreducible-characters.pdf">here</a>.</p>
</article>
<hr class="content-separator"/>
<footer class="footer">
<span class="rfooter">
<a class="rss-icon" href="/rss.xml" target="_blank" title="RSS feed"><!--RSS feed icon--></a><a class="atom-icon" href="/atom.xml" target="_blank" title="Atom feed"><!--Atom feed icon--></a><a class="cc-icon" href="https://creativecommons.org/licenses/by/4.0/" target="_blank" title="Released under the Creative Commons Attribution 4.0 International license."><!--CC icon--></a>
<a href="https://github.com/zmwangx" target="_blank">Zhiming Wang</a>
</span>
</footer>
</body>
</html>
|